US009317538B1

a2 United States Patent 10) Patent No.: US 9,317,538 B1
Stephens et al. (45) Date of Patent: Apr. 19, 2016
(54) METHODS FOR GENERATING DATA SETS 6,832,287 B2* 12/2004 Beestonetal. 711/111
700/1
)) 7,529,784 B2* 5/2009 Kavuri et al.

(71) Applicant: CA, Inc., Islandia, NY (US) 7,631,220 B1* 12/2009 Hamilton etal. 714/15
8,042,107 B2* 10/2011 Amodio et al. .. . T1175
(72) Inventors: William Stephens, Yucaipa, CA (US); 8,060,776 B1* 11/2011 Schoenthal ... GOG6F ; }/12/(1)22
D{I;é” (§y Mof't%?:n‘fry’ COhO?’IC‘z. 8,165,221 B2* 4/2012 Zhengetal. ... 375/240.26
(US); Nancy’e Fitzsimmons, Islandia, 8,281,066 B1* 10/2012 Trimmer et al. . .. 711/103
NY (US) 8,291,183 B2* 10/2012 McCloskey etal. 711/162
2006/0155776 AL* 7/2006 AUSt ..ovvereerrrnrens GOGF 17/30067
(73) Assignee: CA, INC., New York, NY (US) 2007/0113157 Al* 5/2007 Peregoccccceovveceee 714/770
2008/0059745 Al* 3/2008 Tsukadaetal. 711/165
(*) Notice: Subject to any disclaimer, the term of this 2009/0103432 Al* 42009 Trkozcccoooe GOGF é%z/g%
patent is extended or adjusted under 35 2009/0276771 AL* 11/2009 Nickoloy GOGF 9/4856
U.S.C. 154(b) by 277 days. 717/177
2010/0180093 ALl* 7/2010 Huber et al.ccooovennn... 711/162
(21) Appl. No.: 14/022,747 2011/0153965 Al* 6/2011 Haustein et al. 711/162
2011/0283077 Al* 11/2011 Cammarataet al. 711/170
(22) Flled Sep. 10 2013 2013/0054924 Al * 2/2013 Dudgeon et al 711/170

i OTHER PUBLICATIONS

(51) Int. CL Satyanarayanan, M., et al., “Coda File System User and System

GOGF 17/00 (2006.01) Administrator’s Manual”, (¢) 2000 Coda Team, Carnegie Mellon
GO6F 17/30 (2006.01) University, 82 pages.*
(52) US.CL
CPC GO6F 17/30289 (2013.01) * cited by examiner
(58) Field of Classification Search Primary Examiner — Robert Stevens
[CJIS’SC .. GOG6F 12837(3222 (74) Attorney, Agent, or Firm — Vierra Magen Marcus LLP
See application file for complete search history. (57) ABSTRACT
Methods for recovering data sets using existing catalog
(56) References Cited entries are described. The data sets to be recovered may
correspond with a portion of a data storage volume that has
U.S. PATENT DOCUMENTS been archived. In some embodiments, an archived data set
4644468 A * 21987 DOSIT oo HO4L 29/00 may be re-catalo.ged.to a psegdo-volume in order to preserve
709/220 catalog sequencing information for data sets that are mem-
5,546,557 A * 8/1996 Allenetal. ..o, T11/111 bers of the data set. In some embodiments, a data storage
6,012,032 A * 1/2000 Donovanetal. 705/40 system may utilize a system interrupt to detect that a request
6,199,074 B1* 3/2001 Kern et al. to create a new data set has failed due to a conflict with an
G140 BL 32001 Pance v TUAM iting ctalog enty, scauire dta st reaton paramneer
6,336,172 B1* 1/2002 Dayetal. 71161 associated with the request to create the new data set, and
6,557,089 B1* 4/2003 Reed etal. .. 711/162 issue a catalog alter command using the data set creation
6,598,134 B2* 7/2003 Ofeketal. .. e T11/162 parameters in response to detecting that the request to create
6,718,352 B1* 4/2004 Dangetal. ... e 07611 the new data set has failed.
6,732,244 B2* 5/2004 Ashton et al. 711/162
6,772,303 B2* 8/2004 Crockettetal. ... 711/162 20 Claims, 5 Drawing Sheets

Receive a restore command to restore a data set

i

<1
53

S
4

Determine a new volume for storing the data set

!

| Intercept a catalog request to create a new entry in a

catalog associated with the data set

i

Detect that the catalog request has failed due to a
conflict with an existing catalog entry in the catalog

i

Acquire data set creation parameters associated with
the catalog request

Issue a catalog alter request using the data set lL~s12
creation parameters to update the existing catalog
entry to point to the new volume

=1
2

PR)

3

| Transfer data associated with the data set to the new 14

volume

!

Output a data value indicating that the restoration of
the data set has succeeded

%

[

U.S. Patent Apr. 19,2016 Sheet 1 of 5 US 9,317,538 B1

Server

Network interface 16

N XSO e > Processor 166

Memory 167

Network(s)
180

Storage Device
122

Storage Device
120

Storage Device
121

U.S. Patent Apr. 19,2016 Sheet 2 of 5 US 9,317,538 B1

Receive a restore command to restore a data set 202
Determine if a catalog entry in a catalog _~004
corresponding with the data set points to a pseudo-
volume
Identify an archive source associated with the data _~006

set in response to determining that the catalog entry
points to the pseudo-volume

!

Issue a request to create a new data set for the data

208
set on a volume

Detect that the request to create the new data set _~10

has failed due to a duplicate name already existing in

the catalog

Acquire data set creation parameters associated with

212
the request to create the new data set

Issue a catalog alter request using the data set | _~014

creation parameters in response to detecting that the

request to create the new data set has failed
Transfer data associated with the data set from the
) 216
archive source to the volume

Output a data value indicating that the restoration of 018

the data set has succeeded

FIG. 2

U.S. Patent Apr. 19,2016 Sheet 3 of 5 US 9,317,538 B1

Receive a restore command to restore a data set 302

!

Determine a new volume for storing the data set 304

!

Intercept a catalog request to create a new entry in a
catalog associated with the data set

!

Detect that the catalog request has failed due to a
conflict with an existing catalog entry in the catalog

!

Acquire data set creation parameters associated with
the catalog request

v

Issue a catalog alter request using the data set
creation parameters to update the existing catalog
entry to point to the new volume

!

Transfer data associated with the data set to the new
volume

!

Output a data value indicating that the restoration of
the data set has succeeded

306

308

310

312

314

316

FIG. 3

U.S. Patent Apr. 19,2016 Sheet 4 of 5 US 9,317,538 B1

Identify a data set to be archived 402
Archive the data set by transferring information 404

corresponding with the data set from a first storage
device to a second storage device

!

Free up storage space associated with the data set _~106
on the first storage device subsequent to archiving
the data set

v

Determine a pseudo-volume identifier 408
Update a system catalog entry associated with the 410

data set with the pseudo-volume identifier

FIG. 4

US 9,317,538 B1

Sheet 5 of 5

Apr. 19,2016

U.S. Patent

sweibold ¢ 9Old
uoneoiddy
sjoway
T
r----- TonTTTTTT - 582 9SMoW Beq sa|npoyy swebold WoIsAg
! R:244 L9772 welbold weliboid Jauyi0 uoijes|ddy Bunessdp
g _ _
NN - gy Nz N e
JsIndwion e ivee e .7
ajolusy - k s o
5 LG 2922 @ ﬁ_\mmmm . \\\
1577 N \ 0eze
yompeN L r———K-------- e i e e it Lt e et Attt
Baly apip [] m
s0ea)| 0ELaIU| 3oeLIaU| eed L]
www\w_,wm_ 1ndu| Aiowspy “[op-uoN Aiowsypy *jop-uoN wesboid N-
8s a|qeAOWaY 8|q2AOWBY-UON _
poman NV “
€91V [€007 - ! _ 0077 $/ 0972 Aﬂf 0ezz j - 07z so|npoly weiboid oo l/ma
e
I
1682 m sng wajsAg |
sioeads “ _ _ _ _ swesBold uogedliddy //m_f
%67z “ rqmq !
' SmtmE_ soepa| wershs I
J8jund _ [essyduad 090! 6 g]
i nNano PIA n unessdp N
' Buisss0.d |
1 '
| \ gz \- o522 I, S wv) |
1 |
Solg !
0NN m . GZe }/mv
I
“ m\w.WN \ IIIIIIII A N/_IOIEW IIIIIIII “
V628 ! Rowspy wayshg i
oo p—
Y~ 07

LE7T

US 9,317,538 Bl

1
METHODS FOR GENERATING DATA SETS
USING CATALOG ENTRIES

BACKGROUND

The present disclosure relates to methods for recovering
data sets using existing catalog entries.

Tiered storage techniques allow for the movement of data
across different tiers of a data storage infrastructure between
higher-cost, higher-performance storage devices (e.g., hard
disk drives) and relatively lower-cost, lower-performance
storage devices (e.g., magnetic tape drives). A tiered storage
management system (or hierarchical storage management
system) typically has the ability to move data dynamically
between different storage devices based on predictions
regarding which data will be most frequently requested or
used in the future. Data that has not been requested or used
within a certain period of time (e.g., after one week or month)
may be archived (or migrated) to a lower-cost storage device.

Some operating systems for supporting systems that per-
form high-volume transaction processing, such as z/OS from
IBM®, manage data by means of data sets. A data set may
comprise a text or binary file that includes data, such as one or
more records (e.g., medical records or insurance records)
used by a program running on the system. A data set may also
be used to store information needed by applications running
onthe system (e.g., source programs or macro libraries) or by
the operating system itself (e.g., system variables).

The location of an existing data set may be determined if
the data set name and a corresponding data storage volume
are known. A data storage volume (or volume) may comprise
a unit of a data storage device that is separately addressable
and may be identified by a volume identifier (e.g., a six-
character volume serial number or VOLSER). In some cases,
if the data set is cataloged, then only the data set name is
required in order to locate the data set. However, a cataloged
data set may require that the data set have a unique name or
identifier. A catalog may describe various data set attributes
and provide a mapping to the storage devices or volumes on
which the data set is located. In some cases, a catalog and a
volume table of contents (VITOC) may reside on a direct
access storage device (DASD) that is mounted during opera-
tion of the system. The VTOC may list the data sets that reside
on the DASD, along with information about the location and
size of each of the data sets on the DASD. The system may
have a master catalog containing entries for each of the cata-
logs that are used on the system including pointers to the
catalogs. During a system initialization, the master catalog
may be read to acquire system-level data sets and to deter-
mine the location of the catalogs.

BRIEF SUMMARY

According to one aspect of the present disclosure, technol-
ogy for recovering data sets using existing catalog entries is
disclosed.

Technology for recovering data sets that have been
archived using existing catalog entries is described. The data
sets to be recovered may correspond with a portion of a data
storage volume that has been archived (e.g., to free up space
ona DASD). In some embodiments, an archived data set may
be re-cataloged to a pseudo-volume in order to preserve cata-
log sequencing information for data sets that are members of
the data group. As some system level storage management
software may not allow the creation of a new data set if an
entry for the new data set already exists in a catalog, a data
storage system may bypass these limitations by utilizing a

10

15

20

25

30

35

40

45

50

55

60

65

2

system interrupt to detect that a request to create a new data
set has failed due to a duplicate name already existing in the
catalog, acquire data set creation parameters associated with
the request to create the new data set, and issue a catalog alter
request using the data set creation parameters in response to
detecting that the request to create the new data set has failed.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
jectmatter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter. The claimed
subject matter is not limited to implementations that solve any
or all disadvantages noted in the Background.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the present disclosure are illustrated by way of
example and are not limited by the accompanying figures
with like references indicating like elements.

FIG. 1 depicts one embodiment of a networked computing
environment.

FIG. 2 is a flowchart describing one embodiment of a
process for restoring a data set.

FIG. 3 is a flowchart describing an alternative embodiment
of'a process for restoring a data set.

FIG. 4 is a flowchart describing one embodiment of a
process for updating a catalog entry.

FIG. 5is ablock diagram of an embodiment of a computing
system environment.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be illustrated and described herein
in any of a number of patentable classes or context including
any new and useful process, machine, manufacture, or com-
position of matter, or any new and useful improvement
thereof. Accordingly, aspects of the present disclosure may be
implemented entirely hardware, entirely software (including
firmware, resident software, micro-code, etc.) or combining
software and hardware implementation that may all generally
be referred to herein as a “circuit,” “module,” “component,”
or “system.” Furthermore, aspects of the present disclosure
may take the form of a computer program product embodied
in one or more computer readable media having computer
readable program code embodied thereon.

Any combination of one or more computer readable media
may be utilized. The computer readable media may be a
computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may
be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, or semiconductor system, appara-
tus, or device, or any suitable combination of the foregoing.
More specific examples (a non-exhaustive list) of the com-
puter readable storage medium would include the following:
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an appropriate optical fiber with a repeater, a por-
table compact disc read-only memory (CD-ROM), an optical
storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document,
a computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

US 9,317,538 Bl

3

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device. Program code embodied on a computer
readable signal medium may be transmitted using any appro-
priate medium, including but not limited to wireless, wireline,
optical fiber cable, RF, etc., or any suitable combination of the
foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any com-
bination of one or more programming languages, including
anobject oriented programming language such as Java, Scala,
Smalltalk, Fiffel, JADE, Emerald, C++, CII, VB.NET or the
like, conventional procedural programming languages, such
as the “C” programming language, Visual Basic, Fortran
2003, Perl, Python, COBOL 2002, PHP, ABAP, dynamic
programming languages such as Python, Ruby and Groovy,
or other programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider) or in a cloud
computing environment or offered as a service such as a
Software as a Service (SaaS).

Aspects of the present disclosure are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatuses (systems) and computer program prod-
ucts according to embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable instruction
execution apparatus, create a mechanism for implementing
the functions/acts specified in the flowchart and/or block
diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that when executed can direct a
computer, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions when stored in the computer readable medium
produce an article of manufacture including instructions
which when executed, cause a computer to implement the
function/act specified in the flowchart and/or block diagram
block or blocks. The computer program instructions may also
be loaded onto a computer, other programmable instruction
execution apparatus, or other devices to cause a series of
operational steps to be performed on the computer, other
programmable apparatuses or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable appa-

15

25

30

35

40

45

4

ratus provide processes for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

Technology is described for recovering data sets that have
been archived using existing catalog entries. Data groups may
also be recovered. The data sets to be recovered may corre-
spond with a portion of a data storage volume that has been
archived (e.g., to free up space on a DASD). In some embodi-
ments, an archived data set may be re-cataloged to a pseudo-
volume in order to preserve catalog sequencing information
for data sets that are members of the data group. In this case,
a corresponding catalog entry for the archived data set may
comprise a pseudo-volume identifier (e.g., a pseudo-
VOLSER) that points to a pseudo-volume (i.e., a volume that
is not accessible). As some system level storage management
software may not allow the creation of a new data set (e.g., the
creation of a new SMS data set via a dynamic allocation
function) if an entry for the new data set already exists in a
catalog, a data storage system may bypass these limitations
by utilizing a system interrupt (e.g., a supervisor call instruc-
tion intercept routine) or hook to detect that a request to create
a new data set has failed due to a duplicate name already
existing in the catalog, acquire data set creation parameters
associated with the request to create the new data set (e.g., the
name of a data set and the one or more volumes on which the
data set is stored), and issue a catalog alter request using the
data set creation parameters in response to detecting that the
request to create the new data set has failed. In one embodi-
ment, the catalog alter request may alter the catalog during
dynamic allocation in order to reference a volume associated
with the newly created data set instead of a pseudo-volume.

In some embodiments, restoration of an archived data set
may comprise receiving a restore command to restore a data
set, determining a new volume for storing the data set, inter-
cepting a catalog request to create a new entry in a catalog
associated with the data set, detecting that the catalog request
has failed due to a conflict with an existing catalog entry,
acquiring data set creation parameters associated with the
catalog request to create the new entry, and submitting a
catalog alter request using the data set creation parameters in
order to update the existing catalog entry to point to the new
volume on which the data set is stored. In some cases, the data
set may comprise a non-VSAM data set.

FIG. 1 depicts one embodiment of a networked computing
environment 100 in which the disclosed technology may be
practiced. Networked computing environment 100 includes a
plurality of storage devices interconnected through one or
more networks 180. The one or more networks 180 allow a
particular computing device, such as server 160, to connect to
and communicate with the plurality of storage devices or
another computing device not depicted. The depicted storage
devices include storage devices 120-122. Storage devices
120-122 may comprise a tiered data storage infrastructure (or
a portion of a tiered data storage infrastructure). In one
example, storage device 120 may comprise a hard disk drive,
storage device 121 may comprise a magnetic tape drive, and
storage device 122 may comprise a solid-state drive. In some
cases, a tiered data storage infrastructure may include redun-
dant arrays of independent disks and/or storage area net-
works. The one or more networks 180 may include a secure
network such as an enterprise private network, an unsecure
network such as a wireless open network, a local area network
(LAN), a wide area network (WAN), a storage area network
(SAN), and/or the Internet. Each network of the one or more
networks 180 may include hubs, bridges, routers, switches,
and wired transmission media such as a wired network or
direct-wired connection.

US 9,317,538 Bl

5

Server 160 may comprise a data storage management
server. In some cases, server 160 may comprise a network
attached storage server, a data storage server, a network
server, or a file server. In general, a “server” may include a
hardware device that acts as the host in a client-server rela-
tionship or a software process that shares a resource with or
performs work for one or more clients. Communication
between computing devices in a client-server relationship
may be initiated by a client sending a request to the server
asking for access to a particular resource or for particular
work to be performed. The server may subsequently perform
the actions requested and send a response back to the client.

One embodiment of server 160 includes a network inter-
face 165, processor 166, and memory 167, all in communi-
cation with each other. Network interface 165 allows server
160 to connect to one or more networks 180. Network inter-
face 165 may include a wireless network interface, a modem,
and/or a wired network interface. Processor 166 allows server
160 to execute computer readable instructions stored in
memory 167 in order to perform processes discussed herein.

Networked computing environment 100 may provide a
cloud computing environment for one or more computing
devices. Cloud computing refers to Internet-based comput-
ing, wherein shared resources, software, and/or information
are provided to one or more computing devices on-demand
via the Internet (or other global network). The term “cloud” is
used as a metaphor for the Internet, based on the cloud draw-
ings used in computer networking diagrams to depict the
Internet as an abstraction of the underlying infrastructure it
represents.

In one embodiment, a data storage management server,
such as server 160 in FIG. 1, may restore an archived data set
by transferring information corresponding with the data set
from a first storage device (e.g., a magnetic tape drive) to a
second storage device (e.g., a hard disk drive). The data
storage management server may intercept a catalog request to
create a new entry in a catalog associated with the data set,
detect that the catalog request has failed due to a conflict with
an existing catalog entry, acquire data set creation parameters
associated with the catalog request to create the new entry,
and submit a catalog alter request using the data set creation
parameters in order to update the existing catalog entry to
point to the second storage device.

FIG. 2 is a flowchart describing one embodiment of a
process for restoring a data set. In one embodiment, the pro-
cess of FIG. 2 is performed by a server, such as server 160 in
FIG. 1.

In step 202, a restore command to restore a data set is
received. The restore command may be issued from an end
user or operator of a data storage management server, such as
server 160 in FIG. 1. The restore command may be automati-
cally generated by a data retrieval application running on a
data storage management server.

In some embodiments, a restore command to restore one or
more data sets may be issued. The restore command may
comprise a command that explicitly names one or more data
sets to be restored. In other embodiments, the restore com-
mand may comprise a command that specifies one or more
data sets to be restored using pattern names (like application
group), regular expressions, and/or wildcards (e.g., using an
asterisk sign to match zero or more characters). The restore
command may also specity restrictions such as restoring only
a limited number of data sets, restoring only the data sets that
are in an active state or that are cataloged, or restoring only the
data sets that are from a limited set of volumes.

In step 204, it is determined if a catalog entry in a catalog
corresponding with the data set points to a pseudo-volume. In

10

15

20

25

30

35

40

45

50

55

60

65

6

some cases, a pointer to a pseudo-volume (e.g., a fictitious
volume identifier that points to a volume that is not acces-
sible) may be used when a data set has been archived (e.g., to
save space on a DASD) in order to preserve catalog sequenc-
ing information for the data group. The pseudo-volume may
be identified via a pseudo-volume identifier (e.g., a pseudo-
VOLSER). The pseudo-volume may also be identified via the
setting of a flag bit corresponding with a particular catalog
entry. In some embodiments, if the catalog entry corresponds
with a pointer to a pseudo-volume, then a modified data
recovery process may be performed in which a data storage
management server may detect that a request to create a new
catalog entry has failed due to a conflict with an existing
catalog entry and in response issue a catalog alter request in
order to update the existing catalog entry to point to a new
volume corresponding with the data set.

In step 206, an archive source associated with the data set
is identified in response to determining that the catalog entry
points to the pseudo-volume. The archive source may com-
prise a magnetic tape storage device, a magnetic disk storage
device, or an optical disk storage device that stores informa-
tion corresponding with the data set. In step 208, a request to
create a new data set for the data set on a volume is issued. In
one embodiment, the volume may be associated witha DASD
to which archived data may be transferred.

In step 210, it is detected that the request to create the new
data set has failed due to a duplicate name already existing in
the catalog. The detection of the failure of the request to create
the new data set may cause a system interrupt (e.g., via a
supervisor call instruction intercept routine) in which pro-
cessing control is intercepted and redirected.

In step 212, data set creation parameters associated with
the request to create the new data set are acquired. The data set
creation parameters may include a name of a data set and a
volume on which the data set is to be stored. In step 214, a
catalog alter request using the data set creation parameters is
issued in response to detecting that the request to create the
new data set has failed. In one embodiment, the catalog alter
request may be transmitted to a catalog processor. The catalog
processor may comprise a portion of a data storage manage-
ment application that is responsible for managing a catalog
and creating, deleting, and/or altering information stored
within the catalog. The catalog alter request may direct the
catalog processor to modity a particular catalog entry within
a catalog rather than creating a new catalog entry. The catalog
entry may be identified via a name of a data set or other
identification information corresponding with the data set.

In step 216, data associated with the data set is transferred
from the archives source to the volume. In step 218, a data
value indicating that the restoration of the data set has suc-
ceeded is outputted.

FIG. 3 is a flowchart describing an alternative embodiment
of a process for restoring a data set. In one embodiment, the
process of FIG. 3 is performed by a server, such as server 160
in FIG. 1.

In step 302, a restore command to restore a data set is
received. The restore command may be issued by a data
retrieval application running on a data storage management
server. In some embodiments, a restore command may spe-
cifically identify one or more data sets to be restored or
identify an entire data set.

In step 304, a new volume for storing the data set is deter-
mined. The new volume may correspond with a DASD. In
step 306, a catalog request to create a new entry in a catalog
associated with the data set is intercepted. The catalog request
may be intercepted via a system interrupt (e.g., via a super-

US 9,317,538 Bl

7

visor call instruction intercept routine) in which processing
control is intercepted and redirected.

In step 308, it is detected that the catalog request has failed
due to a conflict with an existing catalog entry in the catalog.
In one example, the conflicting catalog entry associated with
the data set may point to a pseudo-volume. In step 310, data
set creation parameters associated with the catalog request
are acquired. The data set creation parameters may include a
name of a data set and a volume on which the data set is stored
orwill eventually be stored. In step 312, a catalog alter request
is issued using the data set creation parameters to update the
existing catalog entry to point to the new volume. In one
embodiment, the catalog alter request may be transmitted to a
catalog processor. The catalog processor may comprise a
portion of a data storage management application that is
responsible for managing a catalog (e.g., a master catalog).
The catalog alter request may direct the catalog processor to
modify a particular catalog entry within a catalog rather than
creating a new catalog entry. The catalog entry may be iden-
tified via a name of a data set or other identification informa-
tion corresponding with the data set.

In step 314, data associated with the data set is transferred
to the new volume. In step 316, a data value indicating that the
restoration of the data set has succeeded is outputted.

FIG. 4 is a flowchart describing one embodiment of a
process for updating a catalog entry. In one embodiment, the
process of FIG. 4 is performed by a server, such as server 160
in FIG. 1.

In step 402, a data set to be archived is identified. The data
set may be identified via an archive command issued from an
end user or operator of a data storage management server,
such as server 160 in FIG. 1. An archive command may also
be automatically generated by a data retrieval application
running on a data storage management server.

In step 404, the data set is archived. The archival of the data
set may comprise transferring information corresponding
with the data set from a first storage device to a second storage
device. The first storage device may correspond with a DASD
and the second storage device may correspond with a mag-
netic tape drive. In step 406, storage space associated with the
data set on the first storage device is freed up subsequent to
transferring information corresponding with the data set to
the second storage device.

In step 408, a pseudo-volume identifier is determined. The
pseudo-volume identifier may comprise a pseudo-VOLSER.
Inone embodiment, the pseudo-volume may correspond with
a predicted future volume to which a data set may eventually
be brought back. The predicted future volume may be pre-
dicted based on a frequency of restoration operations associ-
ated with a plurality of storage devices. For example, the
predicted future volume may correspond with a storage
device of the plurality of storage devices with the highest
frequency of restoration operations. A pseudo-volume may
be identified via the setting of a pseudo-volume flag bit cor-
responding with a particular catalog entry. In step 410, a
system catalog entry associated with the data set is updated
with the pseudo-volume identifier.

In some embodiments, a method for restoring an archived
data set may comprise receiving a recovery command to
recover a data set, determining a new volume for storing the
data set, and intercepting a catalog request to create a new
entry in a catalog associated with the data set. The method for
restoring an archived data set may further comprise detecting
that the catalog request has failed due to a conflict with an
existing catalog entry, acquiring data set creation parameters
associated with the catalog request to create the new entry,
and issuing a catalog alter request using the data set creation

10

15

20

25

30

35

40

45

50

55

60

65

8

parameters in order to update the existing catalog entry to
point to the new volume on which the data set is stored or will
eventually be stored.

One embodiment comprises receiving a restore command
to restore a data set, determining a new volume for storing the
data set, identifying an archive source that stores data corre-
sponding with the data set, detecting that a request to create a
new data set for the data set on the new volume has failed due
to a conflict with a catalog entry in a catalog of a data storage
system, acquiring data set creation parameters associated
with the request to create the new data set, issuing a catalog
alter request using the data set creation parameters to alter the
catalog entry in response to detecting that the request to create
the new data set has failed, and transferring the data corre-
sponding with the data set from the archive source to the new
volume.

One embodiment comprises a data storage system com-
prising a first storage device, a second storage device, and a
processor in communication with the first storage device and
the second storage device. The first storage device stores data
corresponding with a data set. The processor detects that a
request to create a new data set for the data set on the second
storage device has failed due to a conflict with a catalog entry
in a catalog of the data storage system. The processor acquires
data set creation parameters associated with the request to
create the new data set and issues a catalog alter request using
the data set creation parameters to alter the catalog entry in
response to detecting that the request to create the new data set
has failed. The processor causes the data corresponding with
the data set to be transferred from the first storage device to
the second storage device.

One embodiment comprises a computer program product
comprising a computer readable storage medium having
computer readable program code embodied therewith. The
computer readable program code configured to receive a
restore command to restore a data set, determine a second
storage device for storing the data set, identify a first storage
device that stores data corresponding with the data set, detect
that a request to create a new data set for the data set on the
second storage device has failed due to a duplicate name
already existing in a catalog, acquire a data set creation
parameter associated with the request to create the new data
set, issue a catalog alter request using the data set creation
parameter to alter a catalog entry of the catalog in response to
detecting that the request to create the new data set has failed,
and cause the data corresponding with the data set to be
transferred from the first storage device to the second storage
device.

The disclosed technology may be used with various com-
puting systems. FIG. 5 is a block diagram of an embodiment
of'a computing system environment 2200, such as server 160
in FIG. 1. Computing system environment 2200 includes a
general purpose computing device in the form of a computer
2210. Components of computer 2210 may include, but are not
limited to, a processing unit 2220, a system memory 2230,
and a system bus 2221 that couples various system compo-
nents including the system memory 2230 to the processing
unit 2220. The system bus 2221 may be any of several types
of bus structures including a memory bus, a peripheral bus,
and a local bus using any of a variety of bus architectures. By
way of example, and not limitation, such architectures
include Industry Standard Architecture (ISA) bus, Micro
Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus,
Video Electronics Standards Association (VESA) local bus,
and Peripheral Component Interconnect (PCI) bus.

Computer 2210 typically includes a variety of computer
readable media. Computer readable media can be any avail-

US 9,317,538 Bl

9

able media that can be accessed by computer 2210 and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita-
tion, computer readable media may comprise computer stor-
age media. Computer storage media includes both volatile
and nonvolatile, removable and non-removable media imple-
mented in any method or technology for storage of informa-
tion such as computer readable instructions, data structures,
program modules or other data. Computer storage media
includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital ver-
satile disks (DVD) or other optical disk storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be used
to store the desired information and which can accessed by
computer 2210. Combinations of the any of the above should
also be included within the scope of computer readable
media.

The system memory 2230 includes computer storage
media in the form of volatile and/or nonvolatile memory such
as read only memory (ROM) 2231 and random access
memory (RAM) 2232. A basic input/output system 2233
(BIOS), containing the basic routines that help to transfer
information between elements within computer 2210, such as
during start-up, is typically stored in ROM 2231. RAM 2232
typically contains data and/or program modules that are
immediately accessible to and/or presently being operated on
by processing unit 2220. The system memory 2230 may store
operating system 2234, application programs 2235, other
program modules 2236, and program data 2237.

The computer 2210 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. The
computer 2210 may include a hard disk drive 2241 that reads
from or writes to non-removable, nonvolatile magnetic
media, a magnetic disk drive 2251 that reads from or writes to
a removable, nonvolatile magnetic disk 2252, and an optical
disk drive 2255 that reads from or writes to a removable,
nonvolatile optical disk 2256 such as a CD ROM or other
optical media. Other removable/non-removable, volatile/
nonvolatile computer storage media that can be used in the
exemplary operating environment include, but are not limited
to, magnetic tape cassettes, flash memory cards, digital ver-
satile disks, digital video tape, solid state RAM, solid state
ROM, and the like. The hard disk drive 2241 is typically
connected to the system bus 2221 through an non-removable
memory interface such as interface 2240, and magnetic disk
drive 2251 and optical disk drive 2255 are typically connected
to the system bus 2221 by a removable memory interface,
such as interface 2250.

The drives and their associated computer storage media
described above provide storage of computer readable
instructions, data structures, program modules and other data
for the computer 2210. Hard disk drive 2241 is illustrated as
storing operating system 2244, application programs 2245,
other program modules 2246, and program data 2247. Note
that these components can either be the same as or different
from operating system 2234, application programs 2235,
other program modules 2236, and program data 2237. Oper-
ating system 2244, application programs 2245, other program
modules 2246, and program data 2247 are given different
numbers here to illustrate that, at a minimum, they are differ-
ent copies. A user may enter commands and information into
computer 2210 through input devices such as a keyboard
2262 and pointing device 2261, commonly referred to as a
mouse, trackball, or touch pad. Other input devices (not
shown) may include a microphone, joystick, game pad, sat-
ellite dish, scanner, or the like. These and other input devices

10

15

20

25

30

35

40

45

50

55

60

65

10

are often connected to the processing unit 2220 through a user
input interface 2260 that is coupled to the system bus, but may
be connected by other interface and bus structures, such as a
parallel port, game port or a universal serial bus (USB). A
monitor 2291 or other type of display device is also connected
to the system bus 2221 via an interface, such as a video
interface 2290. In addition to the monitor, computers may
also include other peripheral output devices such as speakers
2297 and printer 2296, which may be connected through an
output peripheral interface 2295.

The computer 2210 may operate in a networked environ-
ment using logical connections to one or more remote com-
puters, such as a remote computer 2280. The remote com-
puter 2280 may be a personal computer, a server, a router, a
network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to the computer 2210. The logical connections
may include a local area network (ILAN) 2271 and a wide area
network (WAN) 2273, but may also include other networks.
Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets and the Inter-
net.

When used in a LAN networking environment, the com-
puter 2210 is connected to the LAN 2271 through a network
interface or adapter 2270. When used in a WAN networking
environment, the computer 2210 typically includes a modem
2272 or other means for establishing communications over
the WAN 2273, such as the Internet. The modem 2272, which
may be internal or external, may be connected to the system
bus 2221 via the user input interface 2260, or other appropri-
ate mechanism. In a networked environment, program mod-
ules depicted relative to the computer 2210, or portions
thereof, may be stored in the remote memory storage device.
For example, remote application programs 2285 may reside
on memory device 2281. It will be appreciated that the net-
work connections shown are exemplary and other means of
establishing a communications link between the computers
may be used.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various aspects of the present disclo-
sure. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular aspects only and is not intended to be limiting of
the disclosure. As used herein, the singular forms “a”, “an”
and “the” are intended to include the plural forms as well,
unless the context clearly indicates otherwise. It will be fur-
ther understood that the terms “comprises” and/or “compris-
ing,” when used in this specification, specify the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of

US 9,317,538 Bl

11

one or more other features, integers, steps, operations, ele-
ments, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of any means or step plus function elements in the claims
below are intended to include any disclosed structure, mate-
rial, or act for performing the function in combination with
other claimed elements as specifically claimed. The descrip-
tion of the present disclosure has been presented for purposes
of illustration and description, but is not intended to be
exhaustive or limited to the disclosure in the form disclosed.
Many modifications and variations will be apparent to those
of ordinary skill in the art without departing from the scope
and spirit of the disclosure. The aspects of the disclosure
herein were chosen and described in order to best explain the
principles of the disclosure and the practical application, and
to enable others of ordinary skill in the art to understand the
disclosure with various modifications as are suited to the
particular use contemplated.

For purposes of this document, each process associated
with the disclosed technology may be performed continu-
ously and by one or more computing devices. Each step in a
process may be performed by the same or different computing
devices as those used in other steps, and each step need not
necessarily be performed by a single computing device.

For purposes of this document, reference in the specifica-
tion to “an embodiment,” “one embodiment,” “some embodi-
ments,” or “another embodiment” are used to described dif-
ferent embodiments and do not necessarily refer to the same
embodiment.

For purposes of this document, a connection can be a direct
connection or an indirect connection (e.g., via another part).

For purposes of this document, the term “set” of objects,
refers to a “set” of one or more of the objects.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What is claimed is:
1. A method for restoring a data set using a data storage
system, comprising:

determining a new volume for storing the data set;

identifying an archive source that stores data correspond-
ing with the data set;

detecting that a request to create a new data set for the data
set on the new volume has failed due to a duplicate name
conflict with a catalog entry in a catalog of the data
storage system,

acquiring data set creation parameters associated with the
request to create the new data set;

issuing a catalog alter request using the data set creation
parameters to alter the catalog entry in response to
detecting that the request to create the new data set has
failed due to the duplicate name conflict, the issuing the
catalog alter request comprises altering the catalog entry
to point to the new volume for storing the data set; and

transferring the data corresponding with the data set from
the archive source to the new volume.

2. The method of claim 1, wherein:

the detecting that the request to create the new data set has
failed comprises detecting a system interrupt associated
with the failed request and passing control to a supervi-
sor program, the issuing a catalog alter request is per-
formed by the supervisor program.

35

40

45

55

12

3. The method of claim 1, wherein:

the detecting that the request to create the new data set has
failed comprises detecting that a particular supervisor
call interrupt has been triggered.

4. The method of claim 1, wherein:

the issuing a catalog alter request comprises transmitting
the catalog alter request to a catalog processor of the data
storage system.

5. The method of claim 1, wherein:

the data set creation parameters comprise a name of the
data set.

6. The method of claim 1, further comprising:

archiving the data set prior to the identifying an archive
source, the archiving comprises transferring the data
corresponding with the data set to the archive source;

determining a pseudo-volume identifier; and

updating the catalog entry with the pseudo-volume identi-
fier prior to the determining the new volume for storing
the data set.

7. The method of claim 6, further comprising:

determining if the catalog entry points to a pseudo-volume,
the identifying an archive source associated with the
data set is performed in response to determining that the
catalog entry points to the pseudo-volume.

8. The method of claim 6, wherein:

the pseudo-volume identifier comprises
VOLSER.

9. The method of claim 1, wherein:

the archive source comprises a magnetic storage device;
and

the new volume comprises a DASD.

10. The method of claim 1, wherein:

the data storage system comprises a tiered storage system;
and

the catalog comprises a master catalog of the tiered storage
system.

11. A data storage system, comprising:

a first storage device, the first storage device stores data
corresponding with a data set;

a second storage device; and

a set of processors in communication with the first storage
device and the second storage device, the set of proces-
sors detects that a request to create a new data set for the
data set on the second storage device has failed due to a
duplicate name conflict with a catalog entry in a catalog
of the data storage system, the set of processors acquires
data set creation parameters associated with the request
to create the new data set and issues a catalog alter
request using the data set creation parameters to alter the
catalog entry in response to detecting that the request to
create the new data set has failed due to the duplicate
name conflict, the catalog alter request causes the cata-
log entry to point to the second storage device, the set of
processors causes the data corresponding with the data
set to be transferred from the first storage device to the
second storage device.

12. The system of claim 11, wherein:

the set of processors detects that the request to create the
new data set has failed by detecting a system interrupt
associated with the failed request.

13. The system of claim 11, wherein:

the data set creation parameters comprise a name of the
data set.

14. The system of claim 11, wherein:

the first storage device comprises a magnetic storage
device;

the second storage device comprises a DASD; and

a pseudo-

US 9,317,538 Bl

13

the catalog comprises a master catalog of the data storage
system.

15. A computer program product, comprising:

a non-transitory computer readable storage medium hav-
ing computer readable program code embodied there-
with, the computer readable program code comprising:

computer readable program code configured to receive a
restore command to restore a data set;

computer readable program code configured to determine a
second storage device for storing the data set;

computer readable program code configured to identify a
first storage device that stores data corresponding with
the data set;

computer readable program code configured to detect that
a request to create a new data set for the data set on the
second storage device has failed due to a duplicate name
already existing in a catalog;

computer readable program code configured to acquire a
data set creation parameter associated with the request to
create the new data set;

computer readable program code configured to issue a
catalog alter request using the data set creation param-
eter to alter a catalog entry of the catalog in response to
detecting that the request to create the new data set has
failed due to the duplicate name already existing in the
catalog, the catalog alter request causes the catalog entry
to point to the second storage device; and

computer readable program code configured to cause the
data corresponding with the data set to be transferred
from the first storage device to the second storage
device.

10

20

14

16. The computer program product of claim 15, wherein:

the computer readable program code configured to detect
that a request to create a new data set for the data set on
the second storage device has failed comprises computer
readable program code configured to detect a system
interrupt associated with the failed request and pass
programming control to a supervisor program for issu-
ing the catalog alter request.

17. The computer program product of claim 15, wherein:

the computer readable program code configured to detect
that a request to create a new data set for the data set on
the second storage device has failed comprises computer
readable program code configured to detect that a par-
ticular supervisor call interrupt has been triggered.

18. The computer program product of claim 15, wherein

the computer readable program code further comprises:

computer readable program code configured to determine
if the catalog entry points to a pseudo-volume, the com-
puter readable program code configured to identify a
first storage device is executed in response to determin-
ing that the catalog entry points to the pseudo-volume.

19. The computer program product of claim 15, wherein:

the data set creation parameter comprises a name of the
data set.

20. The computer program product of claim 15, wherein:

the first storage device comprises a magnetic storage
device; and

the second storage device comprises a DASD.

#* #* #* #* #*

